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Abstract
Obtaining reliable species observations is of great importance in animal ecology and 
wildlife conservation. An increasing number of studies use camera traps (CTs) to 
study wildlife communities, and an increasing effort is made to make better use and 
reuse of the large amounts of data that are produced. It is in these circumstances that 
it becomes paramount to correct for the species‐ and study‐specific variation in im-
perfect detection within CTs. We reviewed the literature and used our own experi-
ence to compile a list of factors that affect CT detection of animals. We did this 
within a conceptual framework of six distinct scales separating out the influences of 
(a) animal characteristics, (b) CT specifications, (c) CT set‐up protocols, and (d) envi-
ronmental variables. We identified 40 factors that can potentially influence the de-
tection of animals by CTs at these six scales. Many of these factors were related to 
only a few overarching parameters. Most of the animal characteristics scale with 
body mass and diet type, and most environmental characteristics differ with season 
or latitude such that remote sensing products like NDVI could be used as a proxy 
index to capture this variation. Factors that influence detection at the microsite and 
camera scales are probably the most important in determining CT detection of ani-
mals. The type of study and specific research question will determine which factors 
should be corrected. Corrections can be done by directly adjusting the CT metric of 
interest or by using covariates in a statistical framework. Our conceptual framework 
can be used to design better CT studies and help when analyzing CT data. 
Furthermore, it provides an overview of which factors should be reported in CT stud-
ies to make them repeatable, comparable, and their data reusable. This should greatly 
improve the possibilities for global scale analyses of (reused) CT data.
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1  | INTRODUC TION

Obtaining reliable species observations is the key process underly-
ing the study of animal ecology to facilitate wildlife conservation. 
Where researchers previously used to rely on direct observations 
and signs of animals, technological advances have expanded the 
toolbox. Recent years have seen an enormous increase in the num-
ber of studies that use camera traps (CTs) to detect animals (Burton 
et al., 2015; Rowcliffe & Carbone, 2008). CTs are mainly used to 
study terrestrial mammals, especially elusive species that are other-
wise difficult to study (Burton et al., 2015). While their use is often 
primarily motivated by a desire to study a key species in a specific 
study site, increasingly CTs are seen as a potential tool for simul-
taneously investigating multiple species. The underlying assump-
tion being that they are relatively unselective in which species they 
record, due to the passive infrared (PIR) sensors that trigger most 
modern‐day CTs (Rovero, Zimmermann, Berzi, & Meek, 2013). In ad-
dition, the dramatic increase in CT studies across the globe opens for 
(re)use of data for comparative studies across multiple seasons and 
sites (Scotson, Fredriksson, Ngoprasert, Wong, & Fieberg, 2017a; 
Steenweg et al., 2017). It is when moving from single species to com-
munities or from single sites to diverse environmental conditions 
that caution is required when interpreting the data due to implica-
tions of the differences in detection among species, environments, 
and seasons.

There are already several reviews on how to apply CTs, what 
to consider in CT study design, and which types of CTs to use (e.g., 
O’Connell et al., 2011; Rovero & Zimmermann, 2016), and it has 
been acknowledged for some time that analyses should take the 
imperfect detection of CTs into account (Rowcliffe & Carbone, 
2008; Tobler, Carrillo‐Percastegui, Leite Pitman, Mares, & Powell, 
2008). A review by Burton et al. (2015) showed, however, that 
only a minority of studies actually follow through on this advice. 
Camera traps are often used to estimate relative abundance based 
on detection rates (Burton et al., 2015). However, many other fac-
tors apart from abundance also influence CT detection of animals 
including the size of the animal, its movement rate, the denseness 
of the vegetation, the presence of a trail in front of the CT, and the 
use of attractants (Cusack, Dickman, et al., 2015a; Hofmeester, 
Rowcliffe, & Jansen, 2017a; Neilson, Avgar, Burton, Broadley, & 
Boutin, 2018; Rowcliffe, Carbone, Jansen, Kays, & Kranstauber, 
2011; Srbek‐Araujo, Chiarello, Srbek‐Araujo, & Chiarello, 2013). 
These factors should be considered in any CT study when varia-
tion in these factors is expected, as they might influence parame-
ter estimates (occupancy, abundance, activity) based on CT data. 
However, a concise overview of all the factors influencing CT de-
tection of animals and a framework to decide which factors are 
most important to correct for are lacking. Such a framework should 
incorporate an explicit consideration of the processes underlying 
detection of animals by CTs, including ecological processes such 
as animal abundance and movement, and detection processes, as 
was called for by Burton et al. (2015). Such a framework will only 

be effective if it offers practical solutions to correct for biases in 
detectability that can be used by wildlife managers and conser-
vationists with limited access to both resources and statisticians. 
Our goal is to provide this framework and rules of thumb when 
designing or analyzing CT studies.

Here, we present an overview of how (a) animal characteristics 
(both of individuals and of populations), (b) CT model specifications, 
(c) CT set‐up protocol, and (d) environmental variables influence 
detection of animals by CTs within a framework that makes the 
processes explicit at different scales. This overview can be used to 
aid study design, correct metrics derived from CT studies, and help 
select analysis covariates to minimize bias in detection. By pointing 
toward generic solutions, we hope our framework can be used when 
there is limited knowledge about the species of interest, or when the 
CT study is aimed at a whole suite of species.

Lastly, we provide a list of parameters that we think should be 
measured in each CT study and call for better reporting of these 
parameters to improve the reuse potential of CT data.

2  | A CONCEPTUAL FR AME WORK FOR C T 
DETEC TION

Detection of animals by a CT is a combination of three conditional 
probabilities. Firstly, we have the probability that an animal moves 
in front of the CT,

Secondly, comes the probability that an animal triggers the PIR 
sensor of the CT given that it moved in front of the CT,

Thirdly, is the probability that an animal is identifiably detected 
on an image (photograph or video) given that the CT was triggered 
by its movement in front of the CT,

P1 reflects the process of habitat selection of an animal and can 
be subdivided into the four, spatially nested, orders of selection as 
originally described by Johnson (1980):

1st order: physical or geographical range of a species [distribution 
range scale]

2nd order: location of the home range of an individual or social group 
within the geographic range [landscape scale]

3rd order: usage of habitat components within the home range [hab-
itat patch scale]

4th order: usage of microhabitats such as food items/feeding 
patches/nest sites/movement trails, etc. within the habitat [mi-
crosite scale]

(P1)Pr
(
animal moves past CT

)
.

(P2)Pr(animal triggers CT|animal moves past CT).

(P3)
Pr(animal identifiably detected|animal moves past CT & triggers CT).
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We transfer these orders of selection to orders of detection by CTs 
as follows (see also Figure 1). A CT can only detect an individual of a 
specific species if it is within the species’ distribution range (1st order 
or distribution range scale). Within this distribution range, a CT can 
only detect an individual if it is within the home range of that individual 
(2nd order or landscape scale). Within that home range, a CT can only 
detect the individual if it is in a habitat patch that is selected by the an-
imal (3rd order or habitat patch scale). Lastly, within that habitat patch, 
a CT has a higher likelihood of detecting that individual if it is aimed 
at a microsite that is selected by the individual (4th order or microsite 
scale).

To further specify P1, one needs to make explicit what the time 
frame is for this probability. If we assume a time frame of one day 
(which is often done in CT studies, e.g., Burton et al., 2015), it be-
comes the probability that an animal moves past the CT on a given 
day. This is not only dependent on the above mentioned spatially 
dependent drivers of P1 but also on temporally dependent drivers 
such as the distance that an animal travels per day (or day range).

Probabilities P2 and P3 are less influenced by the habitat 
use of individuals and could be considered within the same hi-
erarchical framework as P1, as subsequently a 5th order for the 
CT scale (P2), and a 6th order for the image scale (P3), resulting 
in six orders of detection (Figure 1). Identification of animals 
at the 6th order can include both the identification of species 
and the identification of individuals. We have grouped these as 
we think the same processes influence biases in both types of 
identification.

3  | FAC TORS BIA SING DETEC TION OF 
ANIMAL S BY C TS AT DIFFERENT SC ALES

Initially, we used our cumulative personal experience of camera 
trapping in settings as diverse as Norway, Sweden, the Netherlands, 
South Africa, Myanmar, India, and Turkmenistan to come up with a 
list of factors that we think directly influence detection of animals 

F I G U R E  1  The processes that determine the probability of identifiably detecting an animal species divided into six orders of detection. 
Four orders at different spatial scales for the probability that an animal passes a CT: 1st order or distribution range scale, 2nd order or 
landscape scale, 3rd order or habitat patch scale, and 4th order or microsite scale. The 5th order or CT scale for the probability that the 
animal triggers the PIR sensor of the camera and the 6th order or image scale for the probability that the animal is identifiably detected

1: Distribution range

2: Landscape

3: Habitat patch

4: Microsite

P1:

- Physical range of the 
species

- IUCN threat status
- Productivity

- Home range size
- Density
- Resource availability

- Day range / movement rate
- Landscape features 

tunnelling movement

- Resource availability
- Directionality of 

movement
- Attractant (bait or lure)
- Trails / Paths

P2: |

5: Camera trap

- Heat signature of 
the animal

- PIR sensor 
sensitivity

- Background 
surface 
temperature

- Camera height
- Denseness of the 

vegetation

P3: | 2

6: Image - Type of flash
- Video or photo
- Camera trigger 

speed
- Movement speed of 

the animal
- Directionality of 

movement
- Camera orientation
- Denseness of the 

vegetation
- Time of day
- Weather
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ili
ty
 w
ith
 g
ro
up
 s
iz
e 
in
 d
is
ta
nc
e 
sa
m
pl
in
g 
(B
uc
kl
an
d 
et
 a
l.,
 2
00
1)
. f
D
et
ec
tio
n 
pr
ob
ab
ili
ty
 in
cr
ea
se
s 
w
ith
 in
cr
ea
si
ng
 

di
ff
er
en
ce
 in
 s
ur
fa
ce
 te
m
pe
ra
tu
re
 o
f t
he
 a
ni
m
al
 v
er
su
s 
su
rf
ac
e 
te
m
pe
ra
tu
re
 o
f t
he
 s
ur
ro
un
di
ng
s 
an
d 
de
te
ct
io
n 
pr
ob
ab
ili
ty
 in
cr
ea
se
s 
w
ith
 in
cr
ea
si
ng
 s
ur
fa
ce
 a
re
a 
of
 th
e 
an
im
al
. g I
U
C
N
 th
re
at
 s
ta
tu
s 
is
 d
et
er
-

m
in
ed
 b
y 
a 
co
m
bi
na
tio
n 
of
 th
e 
ch
an
ge
 in
 g
eo
gr
ap
hi
ca
l r
an
ge
 o
f a
 s
pe
ci
es
 a
nd
 a
 c
ha
ng
e 
in
 p
op
ul
at
io
n 
si
ze
 o
f a
 s
pe
ci
es
 (I
U
C
N
, 2
01
8)
. T
he
 th
re
at
 s
ta
tu
s 
in
cr
ea
se
s 
as
 g
eo
gr
ap
hi
ca
l r
an
ge
 a
nd
/o
r p
op
ul
at
io
n 
si
ze
 

de
cl
in
e.
 T
he
re
fo
re
, r
eg
ar
dl
es
s o
f t
he
 c
ur
re
nt
 g
eo
gr
ap
hi
ca
l r
an
ge
 a
nd
 p
op
ul
at
io
n 
si
ze
, d
et
ec
tio
n 
pr
ob
ab
ili
ty
 a
t t
he
 1
st
 o
rd
er
 d
ec
re
as
es
 w
ith
 in
cr
ea
si
ng
 th
re
at
 s
ta
tu
s.
 h S
pe
ci
es
 w
ith
 a
 la
rg
er
 n
ic
he
 b
re
ad
th
 h
av
e 

a 
hi
gh
er
 p
ro
ba
bi
lit
y 
of
 w
al
ki
ng
 p
as
t r
an
do
m
ly
 p
la
ce
d 
C
Ts
. H
ow
ev
er
, w
he
n 
ta
rg
et
in
g 
C
Ts
 fo
r a
 s
pe
ci
fic
 s
pe
ci
es
, t
he
 d
et
ec
tio
n 
pr
ob
ab
ili
ty
 w
ill
 b
e 
hi
gh
er
 w
he
n 
th
e 
sp
ec
ie
s 
ha
s 
a 
sm
al
le
r n
ic
he
 b
re
ad
th
, a
s 
th
es
e 

sp
ec
ie
s 
ca
n 
be
 m
or
e 
ef
fe
ct
iv
el
y 
ta
rg
et
ed
. i D
et
ec
tio
n 
de
cr
ea
se
s 
(m
is
id
en
tif
ic
at
io
n 
in
cr
ea
se
s)
 w
ith
 in
cr
ea
si
ng
 n
um
be
r o
f r
el
at
ed
 s
pe
ci
es
 c
o‐
oc
cu
rr
in
g 
in
 th
e 
sa
m
e 
ar
ea
. j
W
he
n 
an
im
al
s 
us
e 
th
ei
r t
er
rit
or
y 
ex
-

cl
us
iv
el
y,
 th
is
 re
du
ce
s 
th
e 
nu
m
be
r o
f i
nd
iv
id
ua
ls
 p
re
se
nt
 in
 a
 h
om
e 
ra
ng
e 
an
d 
th
us
 d
et
ec
tio
n 
pr
ob
ab
ili
ty
 a
t t
he
 2
nd
 o
rd
er
. T
er
rit
or
ia
lit
y 
ca
n 
di
ff
er
 b
et
w
ee
n 
sp
ec
ie
s,
 s
ea
so
ns
, a
nd
 s
ite
s 
de
pe
nd
in
g 
on
 s
pe
ci
es
 

tr
ai
ts
 a
nd
 re
so
ur
ce
 a
va
ila
bi
lit
y.
 k T
im
e 
sp
en
t o
n 
th
e 
gr
ou
nd
 in
 re
la
tio
n 
to
 C
Ts
 p
la
ce
d 
at
 g
ro
un
d 
le
ve
l. 
Th
is
 re
la
tio
ns
hi
p 
is
 re
ve
rs
ed
 w
he
n 
C
Ts
 a
re
 d
ep
lo
ye
d 
so
m
ew
he
re
 e
ls
e.
 T
hi
s c
ou
ld
 b
e 
to
 ta
rg
et
 s
em
i‐a
qu
at
ic
 

or
 s
em
i‐a
rb
or
ea
l s
pe
ci
es
 b
y 
pl
ac
in
g 
C
Ts
, r
es
pe
ct
iv
el
y,
 a
bo
ve
 w
at
er
 o
r i
n 
th
e 
fo
re
st
 c
an
op
y 
(e
.g
., 
Bo
w
le
r, 
To
bl
er
, E
nd
re
ss
, G
ilm
or
e,
 &
 A
nd
er
so
n,
 2
01
7;
 S
w
in
ne
n,
 H
ug
he
s,
 &
 L
ei
rs
, 2
01
5)
. 

TA
B

LE
 1

 (C
on
tin
ue
d)
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−
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tio
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lit
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 d
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ec
te
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im
al
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so
n
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&
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et
, 2
01
2;
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ve
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t a
l.,
 2
01
3)

C
am
er
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le
ns
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ca
l l
en
gt
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)
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)
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t o
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an
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en
tif
ic
at
io
n 
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 d
et
ec
te
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im
al
s
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pp
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io
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tip
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m
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el
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D
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ee
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 P
itt
et
 2
01
2)
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e 
re
so
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tio
n
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−
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en
tif
ic
at
io
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 d
et
ec
te
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an
im
al
s
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ig
n
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&
 P
itt
et
, 2
01
2;
 

Ro
ve
ro
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t a
l.,
 2
01
3)
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ar
ed
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te
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−

+/
−

Id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 
an
im
al
s

D
es
ig
n,
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ea
so
n

(G
le
n,
 C
oc
kb
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n,
 N
ic
ho
ls
, 

Ek
an
ay
ak
e,
 &
 W
ar
bu
rt
on
, 

20
13
; R
ov
er
o 
et
 a
l.,
 2
01
3)

PI
R 
se
ns
or
 a
ng
le

h
+

(−
)

PI
R 
se
ns
or
 fu
nc
tio
na
lit
y

D
es
ig
n

(M
ee
k 
&
 P
itt
et
, 2
01
2;
 

Ro
ve
ro
 e
t a
l.,
 2
01
3)

PI
R 
se
ns
or
 s
en
si
tiv
ity

++
PI
R 
se
ns
or
 fu
nc
tio
na
lit
y

D
es
ig
n

(M
ee
k 
&
 P
itt
et
, 2
01
2;
 

Ro
ve
ro
 e
t a
l.,
 2
01
3)

Tr
ig
ge
r s
pe
ed
 o
f t
he
 C
T

+
Id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 
an
im
al
s

D
es
ig
n

(F
an
co
ur
t, 
Sw
ea
ne
y,
 &
 

Fl
et
ch
er
, 2
01
8;
 M
ee
k 
&
 

Pi
tt
et
, 2
01
2;
 R
ov
er
o 
et
 a
l.,
 

20
13
)

Ty
pe
 o
f r
es
ou
rc
es
 (v
id
eo
 o
r 

ph
ot
og
ra
ph
s)

i
+

Id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 
an
im
al
s

D
es
ig
n

(M
ee
k 
&
 P
itt
et
, 2
01
2;
 

Ro
ve
ro
 e
t a
l.,
 2
01
3)

a C
ha
ra
ct
er
is
tic
s a
re
 se
en
 a
s c
on
tin
uo
us
 v
ar
ia
bl
es
 u
nl
es
s o
th
er
w
is
e 
st
at
ed
 in
 th
e 
ta
bl
e 
or
 th
e 
fo
ot
no
te
s,
 w
he
re
 th
e 
di
re
ct
io
n 
of
 th
e 
ef
fe
ct
 g
iv
en
 is
 w
ith
 a
n 
in
cr
ea
se
 in
 th
e 
ch
ar
ac
te
ris
tic
. F
or
 e
xa
m
pl
e,
 d
et
ec
tio
n 

pr
ob
ab
ili
ty
 in
cr
ea
se
s w
ith
 a
n 
in
cr
ea
se
 in
 tr
ig
ge
r s
pe
ed
. b
D
ire
ct
io
n 
an
d 
m
ag
ni
tu
de
 o
f e
ff
ec
t o
n 
de
te
ct
io
n 
pr
ob
ab
ili
ty
 g
iv
en
 in
 a
 sc
al
e 
fr
om
 +
+ 
to
 −
 −
 w
ith
 0
 if
 n
o 
ef
fe
ct
 w
as
 fo
un
d,
 b
ia
se
s g
iv
en
 b
et
w
ee
n 
br
ac
ke
ts
 

ar
e 
no
t b
as
ed
 o
n 
lit
er
at
ur
e 
bu
t e
st
im
at
es
 fr
om
 t
he
 a
ut
ho
rs
. W
he
n 
m
ul
tip
le
 s
tu
di
es
 r
ep
or
te
d 
co
nt
ra
st
in
g 
re
su
lts
, w
e 
gi
ve
 t
he
 r
ep
or
te
d 
ra
ng
e 
se
pa
ra
te
d 
w
ith
 a
 /.
 c F
ac
to
r g
iv
en
 n
ee
ds
 to
 b
e 
co
rr
ec
te
d 
fo
r i
f 

m
ul
tip
le
 o
f t
he
se
 a
re
 c
on
si
de
re
d 
in
 a
 st
ud
y 
(s
ee
 m
ai
n 
te
xt
). 
D
es
ig
n 
re
fe
rs
 to
 st
ud
ie
s u
si
ng
 a
 st
ud
y 
de
si
gn
 in
 w
hi
ch
 m
ul
tip
le
 C
T 
m
od
el
s a
re
 u
se
d.
 d P
IR
 se
ns
or
 se
ns
iti
vi
ty
 a
nd
 fl
as
h 
in
te
ns
ity
 d
ec
re
as
e 
w
ith
 b
at
te
ry
 

le
ve

l. 
e D
iff
er
en
t t
yp
es
 o
f b
at
te
rie
s 
(li
th
iu
m
, N
iM
H
, N
iZ
n,
 a
nd
 a
lk
al
in
e)
 h
av
e 
di
ff
er
en
t v
ol
ta
ge
 s
pe
ci
fic
at
io
ns
 a
nd
 h
av
e 
di
ff
er
en
t d
is
ch
ar
ge
 c
ur
ve
s 
in
flu
en
ci
ng
 P
IR
 s
en
so
r s
en
si
tiv
ity
 a
nd
 p
ot
en
tia
lly
 fl
as
h 
in
te
n-

si
ty
 o
ve
r t
im
e.
 f T
he
 fo
ca
l l
en
gt
h 
of
 th
e 
ca
m
er
a 
le
ns
 d
et
er
m
in
es
 th
e 
si
ze
 o
f t
he
 fi
el
d 
of
 v
ie
w
 (a
 lo
w
er
 fo
ca
l l
en
gt
h 
re
su
lts
 in
 a
 la
rg
er
 fi
el
d 
of
 v
ie
w
). 
Th
er
ef
or
e,
 w
e 
ar
gu
e 
th
at
 a
 lo
ng
er
 fo
ca
l l
en
gt
h 
re
du
ce
s 
th
e 

re
te
nt
io
n 
tim
e 
of
 a
n 
an
im
al
 in
 fr
on
t o
f t
he
 C
T 
as
 th
e 
fie
ld
 o
f v
ie
w
 is
 s
m
al
le
r. 
Fu
rt
he
rm
or
e,
 it
 c
ou
ld
 re
su
lt 
in
 in
cr
ea
se
d 
id
en
tif
ic
at
io
n 
of
 s
pe
ci
es
 o
r i
nd
iv
id
ua
ls
 fu
rt
he
r a
w
ay
 (a
s 
th
es
e 
w
ill
 b
e 
la
rg
er
 in
 th
e 
fr
am
e)
 

w
hi
le
 a
t t
he
 s
am
e 
tim
e 
it 
w
ou
ld
 d
ec
re
as
e 
id
en
tif
ic
at
io
n 
of
 a
ni
m
al
s 
cl
os
er
 to
 th
e 
C
T 
as
 th
ey
 m
ig
ht
 e
nd
 u
p 
pa
rt
ly
 o
ut
si
de
 o
f t
he
 fr
am
e.
 g M
an
y 
an
im
al
s 
re
sp
on
d 
ne
ga
tiv
el
y 
to
 w
hi
te
 fl
as
h 
(e
ith
er
 x
en
on
 o
r L
ED
) 

th
us
 re
du
ci
ng
 re
te
nt
io
n 
tim
e 
in
 fr
on
t o
f t
he
 C
T 
an
d 
th
e 
lik
el
ih
oo
d 
of
 th
e 
an
im
al
 b
ei
ng
 re
co
rd
ed
. H
ow
ev
er
, i
f a
n 
an
im
al
 is
 re
co
rd
ed
, t
he
 q
ua
lit
y 
of
 th
e 
im
ag
e 
is
 o
ft
en
 m
uc
h 
be
tt
er
 w
ith
 w
hi
te
 fl
as
h 
(b
es
t w
ith
 

xe
no
n 
fla
sh
). 
D
ue
 to
 re
sp
on
se
s t
o 
th
e 
fla
sh
, t
he
 li
ke
lih
oo
d 
of
 o
bt
ai
ni
ng
 m
ul
tip
le
 im
ag
es
 is
 h
ow
ev
er
 lo
w
er
, w
hi
ch
 m
ig
ht
 re
du
ce
 th
e 
po
te
nt
ia
l f
or
 g
oo
d 
sp
ec
ie
s o
r i
nd
iv
id
ua
l i
de
nt
ifi
ca
tio
n.
 T
he
 e
ff
ec
t o
f t
he
 fl
as
h 

ca
n 
di
ff
er
 b
et
w
ee
n 
se
as
on
s 
du
e 
to
 d
iff
er
en
ce
s 
in
 d
ay
 le
ng
th
 a
nd
 th
e 
fa
ct
 th
at
 th
e 
fla
sh
 is
 o
nl
y 
us
ed
 a
t n
ig
ht
. h T
he
 n
um
be
r o
f t
rig
ge
rs
 o
f a
ni
m
al
s 
ou
ts
id
e 
of
 th
e 
fie
ld
 o
f v
ie
w
 o
f t
he
 c
am
er
a 
in
cr
ea
se
s 
w
ith
 P
IR
 

se
ns
or
 a
ng
le
, d
ec
re
as
in
g 
de
te
ct
ab
ili
ty
 a
t t
he
 6
th
 o
rd
er
. i M

os
t C
Ts
 c
an
 e
ith
er
 t
ak
e 
si
ng
le
 p
ho
to
gr
ap
hs
, a
 b
ur
st
 o
f p
ho
to
gr
ap
hs
, o
r v
id
eo
. T
he
 m
or
e 
m
at
er
ia
l i
s 
co
lle
ct
ed
, g
oi
ng
 fr
om
 s
in
gl
e 
ph
ot
og
ra
ph
s 
to
 a
 

bu
rs
t o
f p
ho
to
gr
ap
hs
 to
 v
id
eo
, t
he
 h
ig
he
r t
he
 p
ro
ba
bi
lit
y 
of
 s
pe
ci
es
 o
r i
nd
iv
id
ua
l i
de
nt
ifi
ca
tio
n 
(6
th
 o
rd
er
) a
s 
be
ha
vi
or
 a
nd
 m
ul
tip
le
 a
ng
le
s 
ca
n 
ai
d 
id
en
tif
ic
at
io
n.
 T
he
re
 is
, h
ow
ev
er
, a
 tr
ad
e‐
of
f a
s 
m
os
t C
Ts
 

ha
ve
 a
 lo
w
er
 tr
ig
ge
r s
pe
ed
 w
he
n 
us
in
g 
vi
de
o 
co
m
pa
re
d 
to
 p
ho
to
 m
od
e.
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e 
ef
fe
ct
 g
iv
en
 is
 w
ith
 a
n 
in
cr
ea
se
 in
 th
e 
ch
ar
ac
te
ris
tic
. F
or
 e
xa
m
pl
e,
 d
et
ec
tio
n 

pr
ob
ab
ili
ty
 in
cr
ea
se
s w
ith
 a
n 
in
cr
ea
se
 in
 C
T 
de
ns
ity
. b
D
ire
ct
io
n 
an
d 
m
ag
ni
tu
de
 o
f e
ff
ec
t o
n 
de
te
ct
io
n 
pr
ob
ab
ili
ty
 g
iv
en
 in
 a
 s
ca
le
 fr
om
 +
+ 
to
 −
 −
 w
ith
 0
 if
 n
o 
ef
fe
ct
 w
as
 fo
un
d,
 b
ia
se
s g
iv
en
 b
et
w
ee
n 
br
ac
ke
ts
 

ar
e 
no
t b
as
ed
 o
n 
lit
er
at
ur
e 
bu
t e
st
im
at
es
 fr
om
 t
he
 a
ut
ho
rs
. W
he
n 
m
ul
tip
le
 s
tu
di
es
 r
ep
or
te
d 
co
nt
ra
st
in
g 
re
su
lts
, w
e 
gi
ve
 t
he
 r
ep
or
te
d 
ra
ng
e 
se
pa
ra
te
d 
w
ith
 a
 /.
 c F
ac
to
r g
iv
en
 n
ee
ds
 to
 b
e 
co
rr
ec
te
d 
fo
r i
f 

m
ul
tip
le
 o
f t
he
se
 a
re
 c
on
si
de
re
d 
in
 a
 st
ud
y 
(s
ee
 m
ai
n 
te
xt
). 
D
es
ig
n 
re
fe
rs
 to
 st
ud
ie
s u
si
ng
 m
ul
tip
le
 st
ud
y 
de
si
gn
s.
 d T
he
 d
is
ta
nc
e 
be
tw
ee
n 
th
e 
an
im
al
 a
nd
 th
e 
C
T 
in
cr
ea
se
s w
ith
 in
cr
ea
si
ng
 C
T 
he
ig
ht
, p
ot
en
tia
lly
 

re
su
lti
ng
 in
 b
et
te
r (
fo
r c
lo
se
 a
ni
m
al
s)
 o
r w
or
se
 (f
or
 a
ni
m
al
s 
fu
rt
he
r a
w
ay
) i
de
nt
ifi
ca
tio
n 
of
 s
pe
ci
es
 a
nd
 in
di
vi
du
al
s.
 e C
ha
ng
in
g 
th
e 
an
gl
e 
of
 th
e 
C
T 
m
ig
ht
 c
ha
ng
e 
PI
R 
se
ns
or
 fu
nc
tio
na
lit
y 
(d
ue
 to
 th
e 
ta
rg
et
ed
 

Fr
es
ne
l l
en
s:
 W
el
bo
ur
ne
 e
t a
l.,
 2
01
6)
, a
nd
 a
t t
he
 6
th
 o
rd
er
, i
t m
ig
ht
 in
flu
en
ce
 th
e 
ab
ili
ty
 to
 id
en
tif
y 
sp
ec
ie
s o
r i
nd
iv
id
ua
ls
 d
ue
 to
 a
 c
ha
ng
ed
 p
er
sp
ec
tiv
e.
 f A
lth
ou
gh
 s
ev
er
al
 s
tu
di
es
 m
en
tio
n 
th
at
 d
ire
ct
 s
un
lig
ht
 

ca
n 
re
du
ce
 v
is
ib
ili
ty
 a
nd
 th
us
 id
en
tif
ic
at
io
n 
of
 s
pe
ci
es
 o
r i
nd
iv
id
ua
ls
 (e
.g
., 
M
ee
k 
et
 a
l.,
 2
01
4)
, w
e 
co
ul
d 
no
t f
in
d 
an
y 
st
ud
y 
te
st
in
g 
fo
r a
n 
ef
fe
ct
 o
f C
T 
or
ie
nt
at
io
n 
re
la
tiv
e 
to
 th
e 
su
n 
on
 d
et
ec
tio
n 
pr
ob
ab
ili
ty
. 



8  |     HOFMEESTER et al.

TA
B

LE
 4

 
En
vi
ro
nm
en
ta
l v
ar
ia
bl
es
 o
f C
T 
lo
ca
tio
n 
th
at
 in
flu
en
ce
 d
et
ec
tio
n 
by
 C
Ts
 a
t d
iff
er
en
t o
rd
er
s 
of
 d
et
ec
tio
n

Ch
ar

ac
te

ris
tic

a

D
ire

ct
io

n 
an

d 
m

ag
ni

tu
de

 o
f e

ff
ec

t o
n 

de
te

ct
io

n 
pr

ob
ab

ili
ty

 p
er

 o
rd

er
b

M
ec

ha
ni

sm
St

ud
ie

s 
ne

ed
ed

W
he

n 
to

 
co

rr
ec

t f
or

c
Re

fe
re

nc
es

1
2

3
4

5
6

A
tt
ra
ct
an
t (
ba
it 
or
 

lu
re
)d

+
++
/−

++
/−

C
on
ta
ct
 w
ith
 C
Ts
 a
nd
 re
te
nt
io
n 

tim
e 
in
 fr
on
t o
f C
T

D
es
ig
n,
 

se
as
on

(D
ie
te
, M
ee
k,
 D
ix
on
, D
ic
km
an
 a
nd
 L
eu
ng
, 2
01
6;
 

Sa
tt
er
fie
ld
 e
t a
l.,
 2
01
7;
 S
uá
re
z‐
Ta
ng
il 
an
d 
Ro
dr
íg
ue
z,
 

20
17
)

Ba
ck
gr
ou
nd
 

te
m
pe
ra
tu
re

e
−

−
−

− 
−

C
on
ta
ct
 w
ith
 C
Ts
 a
nd
 P
IR
 

se
ns
or
 fu
nc
tio
na
lit
y

Se
as
on
, s
ite

(N
ag
y‐
Re
is
 e
t a
l.,
 2
01
7;
 L
es
m
ei
st
er
 e
t a
l.,
 2
01
5;
 P
ea
se
, 

N
ie
ls
en
 a
nd
 H
ol
zm
ue
lle
r, 
20
16
; W
el
bo
ur
ne
 e
t a
l.,
 2
01
6)

D
en
se
ne
ss
 o
f t
he
 

ve
ge
ta
tio
n

−
−

− 
−

− 
−

− 
−

C
on
ta
ct
 w
ith
 C
Ts
, P
IR
 s
en
so
r 

fu
nc
tio
na
lit
y,
 a
nd
 id
en
tif
ic
a-

tio
n 
of
 d
et
ec
te
d 
an
im
al
s

D
es
ig
n,
 

se
as
on
, s
ite

(H
of
m
ee
st
er
 e
t a
l.,
 2
01
7a
; R
ic
h 
et
 a
l.,
 2
01
6)

D
is
ta
nc
e 
of
 a
ni
m
al
 

to
 th
e 
ca
m
er
a

− 
−

− 
−

PI
R 
se
ns
or
 fu
nc
tio
na
lit
y 
an
d 

id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 

an
im
al
s

D
es
ig
n,
 

se
as
on
, s
ite

(H
of
m
ee
st
er
 e
t a
l.,
 2
01
7a
; H
ow
e 
et
 a
l. 
20
17
; R
ow
cl
iff
e 
et
 

al
., 
20
11
)

H
um
an
 d
is
tu
rb
an
ce
f

+/
−

+/
−

+/
−

(−
)

(−
)

C
on
ta
ct
 w
ith
 C
Ts

Se
as
on
, s
ite

(L
ar
ru
ce
a 
et
 a
l.,
 2
00
7;
 W
ea
rn
 e
t a
l.,
 2
01
7)

La
nd
sc
ap
e 
fe
at
ur
es
 

ch
an
ne
lin
g 
an
im
al
 

m
ov
em
en
t (
e.
g.
, 

tr
ai
ls)

++
++

C
on
ta
ct
 w
ith
 C
Ts

D
es
ig
n,
 

se
as
on
, s
ite

(C
us
ac
k,
 D
ic
km
an
, e
t a
l.,
 2
01
5a
; H
ar
m
se
n 
et
 a
l.,
 2
01
0;
 

Ko
lo
w
sk
i a
nd
 F
or
re
st
er
, 2
01
7;
 R
ei
lly
, T
ob
le
r, 

So
nd
er
eg
ge
r a
nd
 B
ei
er
, 2
01
7;
 S
rb
ek
‐A
ra
uj
o 
et
 a
l.,
 2
01
3)

Re
pu
ls
iv
e 
fe
at
ur
es
 

in
 th
e 
la
nd
sc
ap
eg

−
−

−
C
on
ta
ct
 w
ith
 C
Ts
 a
nd
 re
te
nt
io
n 

tim
e 
in
 fr
on
t o
f C
T

D
es
ig
n,
 

se
as
on
, s
ite

(K
ho
ro
zy
an
 e
t a
l.,
 2
01
4;
 L
ar
ru
ce
a 
et
 a
l.,
 2
00
7;
 M
an
n,
 

O
’R
ia
in
, &
 P
ar
ke
r, 
20
15
; N
ag
y‐
Re
is
 e
t a
l.,
 2
01
7;
 R
ic
h 
et
 

al
., 
20
17
)

Re
so
ur
ce
 

av
ai
la
bi
lit
y

++
++

++
++

++
C
on
ta
ct
 w
ith
 C
Ts
 a
nd
 re
te
nt
io
n 

tim
e 
in
 fr
on
t o
f C
T

D
es
ig
n,
 

se
as
on
, s
ite

(B
ra
ss
in
e 
&
 P
ar
ke
r, 
20
15
; L
es
m
ei
st
er
 e
t a
l.,
 2
01
5;
 

N
ag
y‐
Re
is
 e
t a
l.,
 2
01
7;
 R
ic
h 
et
 a
l.,
 2
01
7)

Ti
m
e 
of
 d
ay
 (d
ay
 v
s.
 

ni
gh
t)h

+/
−

Id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 

an
im
al
s

Se
as
on
, s
ite

(C
us
ac
k,
 S
w
an
so
n 
et
 a
l.,
 2
01
5b
; N
ag
y‐
Re
is
 e
t a
l.,
 2
01
7;
 

Ro
w
cl
iff
e 
et
 a
l.,
 2
01
4)

W
ea
th
er

+/
−

+/
−

PI
R 
se
ns
or
 fu
nc
tio
na
lit
y 
an
d 

id
en
tif
ic
at
io
n 
of
 d
et
ec
te
d 

an
im
al
s

Se
as
on
, s
ite

(L
es
m
ei
st
er
 e
t a
l.,
 2
01
5;
 N
ag
y‐
Re
is
 e
t a
l.,
 2
01
7;
 P
ea
se
 e
t 

al
., 
20
16
)

a C
ha
ra
ct
er
is
tic
s a
re
 se
en
 a
s c
on
tin
uo
us
 v
ar
ia
bl
es
 u
nl
es
s o
th
er
w
is
e 
st
at
ed
 in
 th
e 
ta
bl
e 
or
 th
e 
fo
ot
no
te
s,
 w
he
re
 th
e 
di
re
ct
io
n 
of
 th
e 
ef
fe
ct
 g
iv
en
 is
 w
ith
 a
n 
in
cr
ea
se
 in
 th
e 
ch
ar
ac
te
ris
tic
. F
or
 e
xa
m
pl
e,
 d
et
ec
tio
n 

pr
ob
ab
ili
ty
 in
cr
ea
se
s w
ith
 a
n 
in
cr
ea
se
 in
 re
so
ur
ce
 a
va
ila
bi
lit
y.
 b D
ire
ct
io
n 
an
d 
m
ag
ni
tu
de
 o
f e
ff
ec
t o
n 
de
te
ct
io
n 
pr
ob
ab
ili
ty
 g
iv
en
 in
 a
 s
ca
le
 fr
om
 +
+ 
to
 −
 −
 w
ith
 0
 if
 n
o 
ef
fe
ct
 w
as
 fo
un
d,
 b
ia
se
s g
iv
en
 b
et
w
ee
n 

br
ac
ke
ts
 a
re
 n
ot
 b
as
ed
 o
n 
lit
er
at
ur
e 
bu
t e
st
im
at
es
 fr
om
 th
e 
au
th
or
s.
 W
he
n 
m
ul
tip
le
 s
tu
di
es
 re
po
rt
ed
 c
on
tr
as
tin
g 
re
su
lts
, w
e 
gi
ve
 th
e 
re
po
rt
ed
 ra
ng
e 
se
pa
ra
te
d 
w
ith
 a
 /.
 c F
ac
to
r g
iv
en
 n
ee
ds
 to
 b
e 
co
rr
ec
te
d 

fo
r i
f m
ul
tip
le
 o
f t
he
se
 a
re
 c
on
si
de
re
d 
in
 a
 s
tu
dy
 (s
ee
 m
ai
n 
te
xt
). 
D
es
ig
n 
re
fe
rs
 to
 s
tu
di
es
 u
si
ng
 m
ul
tip
le
 s
tu
dy
 d
es
ig
ns
. d A
tt
ra
ct
an
ts
 c
an
 h
av
e 
di
ff
er
en
t e
ff
ec
ts
 o
n 
di
ff
er
en
t s
pe
ci
es
 d
ep
en
di
ng
 o
n 
th
e 
ty
pe
 o
f 

at
tr
ac
ta
nt
 a
nd
 t
he
 s
pe
ci
es
 li
fe
 h
is
to
ry
, f
or
 e
xa
m
pl
e,
 u
si
ng
 m
ea
t a
s 
at
tr
ac
ta
nt
 w
ill
 m
os
t l
ik
el
y 
at
tr
ac
t c
ar
ni
vo
re
s 
bu
t n
ot
 n
ec
es
sa
ril
y 
un
gu
la
te
s 
or
 o
th
er
 h
er
bi
vo
re
s.
 e P
re
se
nt
ed
 d
ire
ct
io
n 
of
 b
ia
s 
is
 fo
r e
nd
o-

th
er
m
s,
 a
s f
or
 c
ol
d 
ec
to
th
er
m
s,
 th
e 
re
la
tio
ns
hi
p 
is
 re
ve
rs
ed
 (t
he
y 
ar
e 
be
tt
er
 d
et
ec
te
d 
at
 h
ig
he
r b
ac
kg
ro
un
d 
te
m
pe
ra
tu
re
s)
. T
he
 e
ff
ec
t o
f t
em
pe
ra
tu
re
 is
 b
ot
h 
du
e 
to
 a
vo
id
an
ce
 b
y 
an
im
al
s o
f t
he
 h
ot
te
st
 p
ar
ts
 

of
 th
e 
la
nd
sc
ap
e 
(2
nd
‐4
th
 o
rd
er
) a
nd
 d
ue
 to
 th
e 
in
flu
en
ce
 o
f b
ac
kg
ro
un
d 
te
m
pe
ra
tu
re
 o
n 
th
e 
PI
R 
se
ns
or
 fu
nc
tio
na
lit
y 
(5
th
 o
rd
er
) f
H
um
an
 d
is
tu
rb
an
ce
 c
an
 h
av
e 
a 
po
si
tiv
e 
or
 n
eg
at
iv
e 
bi
as
 d
ep
en
di
ng
 o
n 
ho
w
 

w
el
l i
nd
iv
id
ua
ls
 in
 a
 p
op
ul
at
io
n/
of
 a
 g
iv
en
 s
pe
ci
es
 a
re
 a
da
pt
ed
 to
 h
um
an
 d
is
tu
rb
an
ce
. F
ur
th
er
m
or
e,
 h
um
an
s 
ca
n 
da
m
ag
e 
or
 s
ab
ot
ag
e 
C
Ts
 w
hi
ch
 le
ad
s 
to
 a
 n
eg
at
iv
e 
bi
as
 a
t t
he
 5
th
 a
nd
 6
th
 o
rd
er
. g R
ep
ul
si
ve
 

fe
at
ur
es
 in
 th
e 
la
nd
sc
ap
e 
ar
e 
of
te
n 
hu
m
an
 fe
at
ur
es
, s
uc
h 
as
 a
 h
ig
hw
ay
, t
ha
t r
ed
uc
e 
de
te
ct
io
n 
of
 c
er
ta
in
 sp
ec
ie
s.
 T
he
re
 a
re
 h
ow
ev
er
 la
rg
e 
di
ff
er
en
ce
s b
et
w
ee
n 
sp
ec
ie
s i
n 
te
rm
s o
f b
ei
ng
 re
pu
ls
ed
 o
r a
tt
ra
ct
ed
 

to
 th
e 
sa
m
e 
la
nd
sc
ap
e 
fe
at
ur
es
 (s
ee
 c
ite
d 
re
fe
re
nc
es
). 

h F
or
 m
os
t s
pe
ci
es
, s
pe
ci
es
 a
nd
 in
di
vi
du
al
s 
ca
n 
be
 b
et
te
r i
de
nt
ifi
ed
 u
si
ng
 c
ol
or
 im
ag
es
 (a
t d
ay
 o
r w
ith
 w
hi
te
 fl
as
h)
 th
an
 u
si
ng
 b
la
ck
 a
nd
 w
hi
te
 im
ag
es
 

(in
fr
ar
ed
 fl
as
h)
. F
ur
th
er
m
or
e,
 th
e 
ra
ng
e 
of
 th
e 
fla
sh
 d
ec
re
as
es
 id
en
tif
ic
at
io
n 
pr
ob
ab
ili
ty
 a
t n
ig
ht
, w
hi
le
 th
is
 is
 n
ot
 th
e 
ca
se
 w
ith
 n
at
ur
al
 (d
ay
) l
ig
ht
. 



     |  9HOFMEESTER et al.

by CTs. Based on this list, we performed searches in Scopus during 
January‐April 2018, using the following search term:

TITLE‐ABS‐KEY ((camera AND trap* OR remote AND camera*)AND 
(wildlife OR mammal* OR bird*)AND (detection* OR detectabil-
ity* OR occupancy*)AND (factor of interest)) AND PUBYEAR > 
2007

We separately ran a search for each factor by adding it to the search 
term to reduce the number of papers that needed to be screened. We 
screened all papers to check if they tested for an effect of the fac-
tor on the detection probability, occupancy, or other parameter de-
scribing the probability that an animal was photographed by the CT. 
Furthermore, we used the initially screened papers to expand our list 
of parameters and ran subsequent searches for those parameters as 
well. This resulted in a total of 40 variables that we grouped into four 
groups: 14 animal characteristics (Table 1), nine CT model specifica-
tions (Table 2), seven CT set‐up characteristics (Table 3), and 10 en-
vironmental variables (Table 4). Note that, we only selected variables 
that directly influence detection of animals by CTs. Variables that indi-
rectly influence detection of animals by CTs, through one of the listed 
variables, are not mentioned in the tables but regularly mentioned in 
the main text when we discuss the selection of covariates.

To estimate the direction and magnitude of the effect for all fac-
tors, we used the parameter estimates of the studies that included the 
factor to qualitatively determine the direction and magnitude of the 
effect on detection probability. We only included factors that directly 
influenced one of the following mechanisms (Tables 1‒4): contact with 
CTs (1st–4th order), retention time in front of CT and PIR sensor func-
tionality (5th order), and identifiable detection of animals or individuals 
on images (6th order). The key papers reporting direction and magni-
tude for factors are referred to in Tables 1‒4. Note that, the reported 
biases do not necessarily show linear relationships with detection 
probability.

For factors in our initial list for which we did not find any ref-
erences in the literature, we used our experience and knowledge 
about the different processes affecting detection to estimate the 
likely direction and effect size, for which we provide our reasoning 
in the footnotes of Tables 1‒4. For these factors, and factors where 

we only found one study testing the effect, we also provide a sug-
gestion for what kind of studies need to be done in order to identify 
the direction and magnitude of the effect on detection (Tables 1‒4). 
Thus, we did not do a formal systematic review but rather used the 
search results and information from the resulting papers comple-
mented by our own experience and ideas to derive as complete a 
list as possible.

4  | AVOIDING OR CORREC TING FOR 
BIA SES IN DETEC TION

Biases (especially those in Tables 2 and 3) can be partially avoided by 
standardizing the CT set‐up protocol and CT model that are used in a 
study. When this is not possible, for example, when using data from 
multiple studies or when studying multiple species, seasons, or sites, 
there are two ways of correcting for these biases: by correcting the 
metric of interest or by using covariates in a statistical framework.

4.1 | Correcting the metric of interest

Several different metrics can be derived from CT data of which one, 
photographic capture rate (number of passages per unit of time), can 
be corrected for biases directly. This capture rate is often used as a 
relative abundance index (RAI: Carbone et al., 2001) or as a meas-
ure of patch use (Hofmeester, Rowcliffe, & Jansen, 2017b). There 
has been a lot of critique of this metric as it is potentially heavily 
biased by differences in detectability at different scales (Anile & 
Devillard, 2016; Sollmann, Mohamed, Samejima, & Wilting, 2013). 
Some of these biases, in particular those at the 5th order, can, how-
ever, be dealt with by quantifying the effective detection range of 
CTs (Hofmeester et al., 2017a; Rowcliffe et al., 2011). In short, dis-
tance sampling methodology can be used to estimate the effective 
detection distance and angle of the CT for each species, habitat type 
or season, or they can be estimated using covariates (see below for 
which covariates to select). These estimates can then be used to 
correct the capture rate for differences in detectability at the 5th 
order, yielding a corrected index that reflects microsite use and is 
comparable among species, sites, and seasons. This index can thus 
only be used as an estimate of microsite use (e.g., Hofmeester et 
al., 2017b) and not as a (relative) density index unless differences 
in movement rates are also corrected for (sensu Rowcliffe, Field, 
Turvey, & Carbone, 2008).

4.2 | Using covariates in a statistical framework

Instead of correcting the metric directly for biases, it is also possible 
to correct for biases by considering specific covariates in a statisti-
cal framework. These can range from relatively simple multiple lin-
ear regression of photographic capture rates to hierarchical models 
with multiple hierarchical levels (Anile & Devillard, 2016; Mordecai, 
Mattsson, Tzilkowski, & Cooper, 2011). The disadvantage of simple 
multiple linear regression is that single processes that influence both 

TA B L E  5  Relationship between the aim of the study and the 
potential scales at which biases need to be considered

Aim of the study
Which scales need to 
be considered

Species distribution 2nd–6th

Species richness/biodiversity 2nd–6th

Abundance/density 3rd–6th

Community ecology/species interactions 3rd–6th

Population demography 3rd–6th

Activity pattern 4th–6th

Behavioral 5th and 6th

Patch use/local activity 5th and 6th
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detection and the ecological process that is the aim of the study can-
not be separated.

The detection and ecological processes sampled by CTs can be 
separated statistically using hierarchical models that make processes 
at different scales explicit (Kéry & Royle, 2016). It is thus possible to 
model each of the six scales we identified separately in a hierarchical 
model. The occupancy models often used with CT data are a good ex-
ample of a hierarchical model in which the ecological or state process 
(occupancy or patch use) and the detection process are modeled sep-
arately (MacKenzie et al., 2006). Other hierarchical models include the 
Royle–Nichols model (Royle & Nichols, 2003), spatially explicit capture–
recapture (SCR) models (Efford, 2004; Royle, Karanth, Gopalaswamy, 
& Kumar, 2009) and distance sampling (Buckland et al., 2001; Howe, 
Buckland, Després‐Einspenner, & Kühl, 2017). As the effect of covari-
ates on the hierarchical processes are estimated using different parts 
of the data—for example, the number of visits at which a species was 
detected for the detection probability, and the number of sites with and 
without detections for the occupancy part of an occupancy model—
these models can separate effects of the same covariate on the differ-
ent processes. All of these models have been applied to CT data, and all 
allow the use of covariates for the different parts of the model.

When applying hierarchical models to CT data, it is important 
to consider the spatial, as well as the temporal scale at which in-
ference is made (Efford & Dawson, 2012; Steenweg, Hebblewhite, 
Whittington, Lukacs, & McKelvey, 2018). After selecting an appro-
priate statistical framework, the next step is to select the proper co-
variates at different hierarchical levels in the model.

5  | HOW TO SELEC T THE APPROPRIATE 
COVARIATES?

It would be impractical and statistically impossible to always cor-
rect for all 40 factors presented in Tables 1‒4. It might also not 
be necessary, as it depends on the specific aims and design of the 
study whether variation in these factors is to be expected (Table 5). 
Considering two examples, a study investigating the visitation fre-
quency of herbivores in relation to damage to forestry (interest in 
4th order habitat selection) would only need to correct for un-
wanted bias due to factors at the 5th and 6th order. This is because 
the nature of the question makes it irrelevant whether it is selection 
of individuals at the 2nd, 3rd, or 4th order that determines these 

F I G U R E  2  Questions that lead to selection of covariates for correction in detection. When performing a CT study or when analyzing CT 
data, the following questions should be asked in relation to differences in detectability. For each question where the answer is multiple, an 
effort needs to be made to analyze or correct for potential biases related to this parameter as presented in the main text

Q1

How many species do you study?

One - More

No need for 
correction

Use body mass and 
diet as covariates

Q2

How many sites are there in the study?

One - More

No need for 
correction

Use latitude, 
topography, 
temperature 
(WorldClim), and/or 
NDVI as covariates

Q3

How many seasons does the study contain?

One - More

No need for 
correction

Use season or 
temperature 
(WorldClim) as 
covariate

Q4
How many types of camera trap 
did you use in the study?

One - More

No need for 
correction

Measure sensitivity 
of PIR sensor of each 
camera trap model
and use as covariate

Q5

How many study setups were used?

One - More

No need for 
correction

Use camera trap 
height and angle as 
covariates
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visitation rates and the correction is only needed to get an unbiased 
estimate of visitation by the species.

In contrast, a study investigating the species richness of a set of 
nature reserves (interest in 1st/2nd order habitat selection) would 
need to correct for unwanted species and site‐specific biases due to 
factors at the 2nd–6th order. This is because different species might 
be more or less easy to identify (6th order), have different heat signa-
tures influencing PIR sensor sensitivity (5th order), have differences 
in microsite (4th order) and habitat selection (3rd order), or have dif-
ferent densities (2nd order). These issues might not only differ be-
tween species, but also between sites for a single species, and there 
might be interactions between factors, for example, differences in 
densities of two related species between sites (2nd) might increase 
the bias due to misidentification (6th order).

Similarly, a study investigating the abundance or habitat use of 
one species in one site would not need to correct for differences 
among species or sites. We came up with a set of simple questions 
(Figure 2) to determine which group of factors needs to be consid-
ered under different study scenarios. These groups are also pre-
sented in Tables 1‒4. For each group, we present one or several 
overarching parameters that are correlated to the factors in Tables 
1‒4, making correcting for the detection process simple and effec-
tive. Combining Table 5 and Figure 2 shows that factors affecting 
detection at the 5th and 6th order need to be considered in most 
studies, making the 5th order the most important one to consider 
as most biases at the 6th order (Tables 2 and 3) can relatively easily 
be accounted for by standardizing CT model and CT set‐up protocol. 
For example, using a single CT model with the same settings and a 
standardized set‐up protocol will correct for biases due to type of 
flash, type of image (video or photograph), camera trigger speed, and 
camera orientation. As CT studies often investigate research ques-
tions at the 2nd or 3rd order (Table 5), there is often a need to also 
correct for 4th order biases. Combining the above, it seems most 
important to correct for 4th and 5th order (microsite and camera 
trap) biases in most CT studies.

5.1 | Multiple species

When considering multiple species within the same site in a CT 
study, one needs to correct for differences among the species for 
the factors given in Table 1 and for differences in responses of spe-
cies to factors in Table 4. Many of the factors in Table 1 are related 
to a few basic life‐history traits of animals. At the 2nd–4th orders, 
home‐range size and day‐range/movement rates of mammals are 
scaled with body mass and diet (Carbone, Cowlishaw, Isaac, & 
Rowcliffe, 2005; Tucker, Ord, & Rogers, 2014), as are directional-
ity and speed of movement (Rowcliffe, Jansen, Kays, Kranstauber, 
& Carbone, 2016). Also, the response of species to resource avail-
ability in the landscape (Table 4) is determined by diet and body mass 
of mammals (Fisher, Anholt, & Volpe, 2011), and body mass scales 
with density with variations in the scaling due to diet (Carbone, 
Rowcliffe, Cowlishaw, & Isaac, 2007). Digestive physiology further 
influences the spatial distribution of herbivores as nonruminants are 

more evenly distributed over the landscape compared to ruminants 
of similar size (Cromsigt, Prins, & Olff, 2009).

At the 5th order, the detection of animals when walking in front of 
the CT is determined by the functionality of the PIR sensor of the CT, 
which is mainly determined by the heat signature of the animal, that 
is, the difference in temperature between the surface of the animal 
and the background surface temperature (Welbourne, Claridge, Paull, 
& Lambert, 2016). This heat signature and the related detection zone 
are again a function of body mass (Hofmeester et al., 2017a; Rowcliffe 
et al., 2011). Concluding, most factors in Table 1 scale with body mass 
dependent on diet type. Therefore, these two life‐history traits are 
important candidates as covariates in models of the detection pro-
cess (e.g., Cove, Spínola, Jackson, Sàenz, & Chassot, 2013). Similarly, 
when using the photographic capture rate, body mass and diet could 
be included as covariates in a multiple regression model to correct 
for detection differences (Anile & Devillard, 2016) or when modeling 
the effective detection distance and angle (Hofmeester et al., 2017a; 
Rowcliffe et al., 2011). The fact that body mass is scaled with so many 
parameters in Table 1 might make it difficult to disentangle the differ-
ent processes that body mass influences. Depending on the question, 
this could be a disadvantage, but it could also be an advantage as one 
could correct for multiple biases with one parameter.

Some other parameters might need to be considered depend-
ing on the species. For example, differences among species in group 
size and the time spent on the ground (as opposed to being arbo-
real, aquatic, subnivean, or fossorial) could potentially have a large 
influence on detection probability. Especially, if part of the species 
community is (semi)arboreal, (semi)fossorial, or (semi)aquatic, this 
will highly influence detection probability although the number of 
studies investigating this bias is very limited.

Most CT studies are designed to target a specific species (often 
a large carnivore) after which the “by‐catch” data are used to study 
whole communities (Harmsen, Foster, Silver, Ostro, & Doncaster, 
2010; Rich et al., 2016; Tobler et al., 2008). In such studies, the setup 
of the CTs for the primary target influences detection probability 
of other species. Most likely, the targeted species will be overrep-
resented (Anile & Devillard, 2016), while other species such as prey 
of the targeted species will be underrepresented (Harmsen et al., 
2010). These kinds of differences in detection probability among 
species can, to some extent, be corrected for by estimating a spe-
cies‐specific detection probability using hierarchical models (Efford 
& Dawson, 2012; Royle & Nichols, 2003).

Many of the variables in Table 1 are also different for the different 
sexes (or demographic groups such as females with dependent young) 
within one species. Therefore, if the aim of the CT study is to derive 
estimates of sex ratio or the demography of a population, detect-
ability differences between the sexes need to be taken into account 
(Singh, Qureshi, Sankar, Krausman, & Goyal, 2014; Srbek‐Araujo, 
2018). Similarly, if the aim of the study is to derive densities based on 
the recognition of individuals, such as (spatial) capture–recapture, dif-
ferences in detectability between sexes, or demographic groups need 
to be taken into account (Larrucea, Brussard, Jaeger, & Barrett, 2007). 
Also, in these studies, differences between camera traps at the 6th 
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scale become more important as image quality becomes an important 
determinant of the possibility of identifying individuals.

5.2 | Multiple sites/seasons

When considering multiple sites or multiple seasons in a CT study, 
one needs to consider a variety of factors related to both animal 
characteristics and environmental variables that might differ among 
the sites/seasons. Many of the factors in Table 1 are dependent on 
season or site variables. For example, at the 2nd order, the home‐
range size of individuals of a species is expected to be different 
among sites and seasons due to differences in resource needs and 
energy expenditure (McNab, 1963). Movement parameters can vary 
within species, often along gradients of environmental productivity 
(Duncan, Nilsen, Linnell, & Pettorelli, 2015) such that remote sensing 
products like NDVI can be used to correct for some of the expected 
inter‐site variation. Similarly, at the 5th order, the heat signature of 
the animal will be different in different seasons and sites due to better 
insulation of a winter coat compared to a summer coat (Hart, 1956) 
and differences in background surface temperature among seasons, 
sites, and even CT locations. Season also influences weather, tem-
perature, and the denseness of the vegetation (Lesmeister, Nielsen, 
Schauber, & Hellgren, 2015; Nagy‐Reis et al., 2017; Rowcliffe et al., 
2011). Weather can have direct effects on detection by CTs: snow, 
ice, or rain can block the field of view of the camera; snow, ice or rain 
on the sensor can lower the sensitivity of the PIR sensor; and low 
temperatures drain the batteries quicker (Cho, Choi, Go, Bae, & Shin, 
2012). The majority of seasonal differences could be corrected for 
by simply adding season as a covariate in whichever model is used to 
analyze the data. Otherwise, site‐specific estimates of temperature 
and precipitation using global datasets using local weather stations 
such as WorldClim (Fick & Hijmans, 2017) can be used as covariates.

A simple solution using a factor such as season is less convenient 
when dealing with different sites as the number of levels in the factor 
could easily become very large when many sites are surveyed. In that 
case, overarching parameters such as altitude, latitude, climatic region, 
NDVI, or percentage forest cover might be useful to classify sites. 
Several studies have classified land use in distinct classes and used 
those as a covariate in models (Ehlers Smith, Ehlers Smith, Ramesh, 
& Downs, 2018; Nagy‐Reis et al., 2017; Rich et al., 2016; Wearn et al., 
2017). We, however, advise the use of a continuous variable such as 
NDVI (as an index of environmental productivity), or extent of forest 
cover obtained from satellite images as overarching parameters that 
influence most parameters in Table 4. Latitude influences day length, 
weather conditions, and other variables that are related to detection 
but has to our knowledge not been used as a covariate to deal with 
these issues yet. Altitude and climatic region influence factors like 
weather, background surface temperature, and resource availability 
and could be used as covariates, although the latter will mainly be im-
portant for global scale studies. When large differences in background 
surface temperature are expected among study sites, satellite‐derived 
global estimates of surface temperature per site might be used to cor-
rect for differences in 5th order detection probability. Similarly, the 

temperature as directly recorded by many CT models could be used 
as a covariate dealing with this issue. In this case, care has to be taken 
as to the reliability of these measurements as direct sunlight on the CT 
might result in too high measurements (Meek et al., 2014). So far, we 
are not aware of any studies using such an approach.

Lastly, correcting for biases becomes more problematic when 
dealing with multiple seasons/sites and multiple species as factors 
might show interactions. For example, changes in home‐range size 
between seasons might be different for species with different body 
mass and/or diets (McNab, 1963). In such circumstances, it becomes 
even more important to reduce the number of parameters to a mini-
mum, to make the exploration of interaction terms between param-
eters in statistical models possible.

5.3 | Multiple CT models

When considering multiple CT models in the same study, one should 
consider the factors described in Table 2. This problem will espe-
cially arrive in long‐term studies as newer CT models replace the 
old ones (Rovero et al., 2013). Similarly, newer versions of the same 
model could potentially also have undergone changes in the angle 
and sensitivity of the PIR sensor or other characteristics. A simple 
solution would be to use CT model as a covariate if more than one 
model is used (Kelly & Holub, 2015). Alternatively, as the PIR sensor 
angle and sensitivity are likely the most influential CT model param-
eter determining detection, these parameters can be measured for 
the different CT models in a regulated environment. One could, for 
example, measure the distance and angle at which each CT model is 
triggered by a warm object moving at a fixed speed (Swann, Hass, 
Dalton, & Wolf, 2004). These measurements can then be used as 
continuous covariates in the statistical model.

5.4 | Multiple setups

Most single studies will not use different setups unless the aim of 
the study is to compare the different setups. Therefore, the problem 
of multiple setups will mainly arise when combining data that were 
collected during different studies (Scotson, Johnston, et al., 2017b). 
Unfortunately, there is no simple solution when it comes to correcting 
for differences in setup. The most important issue to consider is the 
placement of CTs, specifically if they are aimed at a specific object 
(such as a trail or behaviorally important feature such as a scent‐mark-
ing location) or placed at a predefined location regardless of small‐
scale landscape features. Most single‐species studies use a directed 
placement to increase the detection probability for the target species 
(Harmsen et al., 2010). Camera trap placement is especially impor-
tant when considering multiple species, as described above, but also 
becomes important when studying a single species using data from 
multiple studies as the detectability of the same species is different 
for random versus nonrandom placed CTs (Cusack, Dickman, et al., 
2015a). Therefore, inference made from multiple studies using differ-
ent setups should be taken with care and where possible should at 
least use the type of setup as covariate in a statistical model.
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Another important issues related to CT setup is the use of an 
attractant (either bait or a lure) or not. The advantages and disad-
vantages of using attractants are thoroughly discussed previously 
(Zimmermann & Foresti, 2016). In short, the use of an attractant 
might change the spatial behavior and distribution of animals vio-
lating assumptions of several statistical models such as the random 
encounter model (Rowcliffe et al., 2008), occupancy models, or spa-
tially explicit capture–recapture (Gerber, Karpanty, & Kelly, 2012). 
Specifically, the use of bait can increase recapture probability, 
which should be incorporated in the statistical framework (Gerber 
et al., 2012; du Preez, Loveridge, & Macdonald, 2014). Baiting can 
also have negative impacts when species become accustomed to 
this form of supplementary feeding (Balme et al., 2014). We thus 
recommend to carefully consider the use of bait and to correct for 
potential biases due to baiting when analyzing CT data.

A third issue related to CT setup that is important to consider is the 
spacing of CTs or CT density. This is especially important when com-
bining data from different studies to estimate occupancy or densities 
in different areas as several models estimating these variables require 
different setups. For example, models estimating density based on 
SCR require a dense grid of CTs with several CTs per home range 
enabling the capture of single individuals on multiple CTs (O'Brien, 
2011). Contrastingly, models estimating occupancy assume indepen-
dence between sites, necessitating a less dense spacing of camera 
traps with a maximum of one per home range if each CT is considered 
a separate site in the occupancy model (O’Connell & Bailey, 2011). 
Camera spacing should thus be considered when choosing a model 
for comparisons between studies. Subsampling of CTs could be used 
to reduce CT density if needed for between‐study comparisons.

Several other variables related to CT setup that might affect de-
tection have not been studied yet (Table 3), so there is a need for 
a better understanding of how these variables influence detection. 
A simple way to study these effects is by comparing studies using 
multiple setups from a limited geographic region in the same season. 
For this purpose, it is very important that studies report all factors 
related to the CT set‐up protocol (CT height, CT orientation, etc.) in 
a standardized way (see below).

6  | INCORPOR ATING DETEC TION BIA S AT 
DIFFERENT SC ALES INTO DESIGN OF C T 
STUDIES

Our adaptation of the framework of Johnson (1980) can also be used 
to minimize detection bias at different scales while designing CT stud-
ies. This is implicitly already done by many studies targeting large 
carnivores (e.g., Harmsen et al., 2010), but we think it would be good 
to make this incorporation explicit. When targeting a single species, 
knowledge of the distribution and habitat selection of that species on 
the 1st–4th orders can be used to select microsites in the landscape 
where the probability of detection is maximized. For example, when 
it is known that a certain species uses roads (microsite selection at 
the 4th order) as a travel route between foraging sites (sites that are 

selected on the 3rd order), CTs can be placed on roads in these areas 
to increase detectability. Placing CTs on sites that are selected by the 
target species at the 4th order reduces problems with detection prob-
ability to only 5th and 6th order factors. Note that, when using such a 
strategy, the interpretation of the data should be based on the pres-
ence of animal movement and not necessarily the intensity of local 
space use or animal density (Stewart, Fisher, Burton, & Volpe, 2018).

In multi‐species studies, knowledge about habitat use of differ-
ent species can be used to select sites with relatively equal prob-
abilities of all species being present, which is often the aim when 
performing random CT placement.

7  | THE IMPORTANCE OF STANDARDIZED 
REPORTING

The amount of CT data is increasing, and so does the wish for using 
this data for comparative studies (Scotson, Johnston, et al., 2017b; 
Steenweg et al., 2017). This calls for a better standardization of data 
collection and the reporting of data, which is essential for ecologi-
cal data to be reused (Zimmerman, 2008). There are several recent 
initiatives to facilitate standardization, such as the guiding principles 
by Meek et al. (2014), the GBIF best practise guide by Cadman and 
González‐Talaván (2014), and the CT Metadata Standard (Forrester 
et al., 2016). Here, we list the most important factors identified by 
these three documents that we think should be reported to be able 
to correct for biases in detection.

•	 What is considered an independent event/sequence
•	 Length of the survey, of each CT deployment and actual sampling 
effort (number of days the camera was active)

•	 CT model and settings (quiet period, sensor sensitivity, trigger 
speed, photograph, burst of photographs or video, type of flash, 
etc.)

•	 Coordinates of deployment (latitude and longitude in decimal de-
grees using datum WGS84)

•	 Use of bait/lure, if used, which bait/lure, distance between bait/
lure and CT, and how often it was renewed

•	 Placement of CT (along specific features, such as trails, roads, or 
waterpoints; systematic or random; number of CTs per station, 
etc.)

•	 Temperature and weather during the survey
•	 Number and spacing of CTs
•	 Height of the CT, angle to the ground, and CT orientation
•	 Vegetation density and habitat modification in front of the CT

8  | CONCLUSION

We present an overview of the factors that influence CT detection 
of animals. Overall, we believe that factors at the 4th and 5th order 
result in the largest biases (Tables 1‒4), although we would strongly 
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encourage investigators to explicitly test this under a variety of circum-
stances. Factors that influence detection at these scales are therefore 
most important to correct for in CT studies. We think that our frame-
work will clarify the functioning of CTs, by making the processes at dif-
ferent scales explicit. Furthermore, we hope it will aid in (a) the design 
of CT studies, (b) the correction of CT metrics, and/or (c) the selection 
of covariates to decrease unwanted bias in CT data. Lastly, we hope 
our framework will contribute to making CT methodology more robust.

We hope to encourage the study of factors affecting detection 
of animals by CTs and reporting of field experience and model out-
comes that can aid in furthering CT methodology. We want to stress 
that, when designing CT studies, it is better to avoid introducing bias 
in your data than to correct for it afterward. This means standardiza-
tion of the CT set‐up protocol and the CT model used. Which factors 
to take into account when designing a study depends on the study 
question. As such, there are no simple guidelines, which make re-
porting of studies in a repeatable way even more important.

Last, we hope that providing a conceptual framework to deal 
with issues of detectability by CTs aids in a quality improvement of 
CT studies enabling the (re)use of data for global studies of mammal 
communities. Especially, when it comes to the (re)use of data from 
multiple studies, it might be impossible to account for some biases in 
the data. In such cases, extra care should be taken when interpreting 
the results and potential biases discussed.
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